On the Complexity of Parallel Hardness Amplification for One-Way Functions

نویسنده

  • Chi-Jen Lu
چکیده

We prove complexity lower bounds for the tasks of hardness amplification of one-way functions and construction of pseudo-random generators from one-way functions, which are realized non-adaptively in black-box ways. First, we consider the task of converting a one-way function f : {0, 1} → {0, 1} into a harder one-way function f̄ : {0, 1} → {0, 1}, with n̄, m̄ ≤ poly(n), in a black-box way. The hardness is measured as the fraction of inputs any polynomial-size circuit must fail to invert. We show that to use a constant-depth circuit to amplify hardness beyond a polynomial factor, its size must exceed 2, and to amplify hardness beyond a 2 factor, its size must exceed 2 o(n) . Moreover, for a constant-depth circuit to amplify hardness beyond an n factor in a security preserving way (with n̄ = O(n)), it size must exceed 2 o(1) . Next, we show that if a constant-depth polynomial-size circuit can amplify hardness beyond a polynomial factor in a weakly black-box way, then it must basically embed a hard function in itself. In fact, one can derive from such an amplification procedure a highly parallel one-way function, which is computable by an NC circuit (constant-depth polynomialsize circuit with bounded fan-in gates). Finally, we consider the task of constructing a pseudo-random generator G : {0, 1} → {0, 1} from a strongly one-way function f : {0, 1} → {0, 1} in a black-box way. We show that any such a construction realized by a constant-depth 2 o(1) -size circuit can only have a sublinear stretch (with m̄− n̄ = o(n̄)).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexamples to Hardness Amplification beyond Negligible

If we have a problem that is mildly hard, can we create a problem that is significantly harder? A natural approach to hardness amplification is the “direct product”; instead of asking an attacker to solve a single instance of a problem, we ask the attacker to solve several independently generated ones. Interestingly, proving that the direct product amplifies hardness is often highly non-trivial...

متن کامل

Hardness Amplification of Weakly Verifiable Puzzles

Is it harder to solve many puzzles than it is to solve just one? This question has different answers, depending on how you define puzzles. For the case of inverting one-way functions it was shown by Yao that solving many independent instances simultaneously is indeed harder than solving a single instance (cf. the transformation from weak to strong one-way functions). The known proofs of that re...

متن کامل

The Cryptographic Hardness of Random Local Functions

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely, by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use random local functions in which each output bit is computed by applying some fixed d-ary predicate P to a ran...

متن کامل

The Journey from NP to TFNP Hardness

The class TFNP is the search analog of NP with the additional guarantee that any instance has a solution. TFNP has attracted extensive attention due to its natural syntactic subclasses that capture the computational complexity of important search problems from algorithmic game theory, combinatorial optimization and computational topology. Thus, one of the main research objectives in the context...

متن کامل

Lower Bounds and Hardness Amplification for Learning Shallow Monotone Formulas

Much work has been done on learning various classes of “simple” monotone functions under the uniform distribution. In this paper we give the first unconditional lower bounds for learning problems of this sort by showing that polynomial-time algorithms cannot learn constant-depth monotone Boolean formulas under the uniform distribution in the well-studied Statistical Query model. Using a recent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006